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Introduction 

Toxicity of nanoparticles is one of the most attractive and amazing scientific 

areas of research. In the recent decades, nanomaterials have deeply integrated into our 

everyday’s life. There are numerous examples of already established and possible 

applications of using nanoparticles such as textile, cosmetics, optical, pharmacy, 

electronics, etc. According to the recent research [1] over 1000 different manufactured 

nanoparticles (NPs) were developed and introduced to the market; some of them may 

cause toxic effects in humans and nature. Although the nanotechnology field is growing 

rapidly, the potential harmful effects of nanomaterials on human’s health or the 

environment have not yet been identified. Thus, there is a clear need for assessment of 

such potentially dangerous toxic effects of nanomaterials for human and environment in 

a short-term period. 

The previous review shows that no single particle characteristic can be a 

hallmark indicator of toxicity, although some particle characteristics show some role in 

directing the biological fate and toxicity [2]. However, Oberdörster et al. [3] suggested 

that the particle size is not the only possible factor influencing the toxicity of 

nanomaterials. The following features should be also considered: 

• size distribution, 

• agglomeration state, 

• shape, 

• porosity, 

• surface area, 

• chemical composition, 

• structure-dependent electronic configuration, 

• surface chemistry, 

• surface charge, 

• crystal structure 

One of the greatest challenges for assessing the potential risks of manufactured 

NPs is the lack of rational evidence-based system for understanding the hazard of 

nanomaterials. Taking into account the increasing number of NPs produced or to be 

produced in the near future, it is clearly impossible to evaluate the hazard parameters by 

testing all these NP products on a case-by-case basis. The classical way of assessing 
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toxicity, e.g. by performing in-vivo experiments, is very expensive and time consuming. 

Performing such tests for all possible nanoparticle types, sizes and concentrations is 

practically infeasible. A cheap and efficient alternative to such tests is using predictive 

computational models, for instance Quantitative Structure-Activity Relationship 

(QSAR) models. 

 

State-of-the-art of predictive modeling for characterization and  

evaluation of nanomaterials toxicity 

 

Regarding the NP structure, the class of nanomaterials is not homogenous, 

combining a range of physico-chemical properties, as well as possible mechanisms of 

metabolism and toxicity. Thus, it is impossible to assume one common modeling 

approach for all nanomaterials. Each mode of toxicity and each class of nanomaterials 

should be studied separately [4]. 

There are only few Quantitative Nano Structure Activity Relationship models 

(QNSAR also frequently referred to as nano-QSAR) described in articles [5, 6]. Most of 

them were developed for carbon-based nanomaterials. Rasulev et al. [7] developed a 

QNSAR model for the cytotoxicity to the bacterium E. coli of nano-sized metal oxides. 

They successfully predicted the toxicity of seven compounds (namely, SnO2, CuO, 

La2O3, Al2O3, Bi2O3, SiO2 and V2O3) from the model trained on the other seven 

oxides (ZnO, TiO2, Fe2O3, Y2O3, ZrO2, In2O3 and Sb2O3). 

Quantitative Structure-Activity Relationship (QSAR) approach allows the 

possibility of theoretical analyses of a great number of properties in a short time without 

extra cost and without in vivo experiments. There are five OECD [8] principles for the 

validation of QSAR models. An ideal QSAR model, which is applicable for regulatory 

purpose, should be associated with 

(i) a well-defined endpoint; 

(ii) an unambiguous algorithm; 

(iii) a defined domain of applicability; 

(iv) appropriate measures of goodness-of-fit, robustness, and predictivity; 

(v) a mechanistic interpretation, if possible. 
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Unfortunately, it is extremely difficult to fulfill all of these principles for 

QNSARs applicable to nanomaterials. There are two main difficulties related to the 

development of QNSARs. The first one is a lack of sufficiently numerous and 

systematic experimental data, while the second one is a very limited knowledge on the 

mechanisms of the toxic action. There is still no clear notion about a toxic behavior NPs 

and characteristics that determine this behavior. 

Natural and anthropogenic nanoparticles gain access into the human body 

through the main ports of entry including the lungs, the skin, or the gastrointestinal 

tract. The unique properties of nanoparticles allow them not only to penetrate 

physiological barriers but also to travel throughout the body and interact with 

subcellular structures. Toxicological studies show that nanoparticles can be found in 

various cells and organellas such as mitochondria, lipid vesicles, nucleus and 

macrophages [9,10]. Thus, we must consider the following type of interaction between 

NPs and the organism. 

Nanoparticles can induce the formation of reactive oxygen species (ROS), for 

instance, superoxide radicals, hydroxyl radicals. This results in oxidative stress and 

inflammation, leading to the impacts on lung and cardiovascular health [11]. 

 

Cytotoxicity and Genotoxicity: 

It is known that the mechanism of oxidative stress is mainly responsible for the 

observed genotoxic and cytotoxic effects induced by nanoparticles. Epidemiological 

studies have shown that nanoparticles might be genotoxic to humans [12]. Irreversible 

DNA modifications resulting from the activity of ROS may lead to heritable mutations. 

 

Neurotoxicity: 

It has been reported that inhaled nanoparticles, depending on their size, may be 

distributed to organs and surrounding tissues, including the olfactory mucosa or 

bronchial epithelium and then can be translocated the olfactory nerves to the central 

nervous system [11]. 
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Immunotoxicity 

The effects of nanoparticles on the immune system are still unclear. The toxicological 

studies have suggested that nanoscale particles interaction with the defense activities of 

immune cells can change their antigenicity and stimulate and/or suppress immune 

responses. Direct experiments showed that macrophages uptake of nanoparticle–protein 

complexes may change the formation of the antigen and initiate an autoimmune 

response [13]. Some studies have also reported that nanoparticles may induce damage to 

red blood cells (erythrocytes). 

 

Ecotoxicity 

In many cases, lack of data precludes an appropriate implementation of 

statistical methods, including necessary external validation of the model. The problem 

of the paucity of data will be solved only when a strict collaboration between the 

experimentalists and QSAR modelers is established. The role of the modelers in such 

studies should not be restricted only to rationalization of the data after completing the 

experimental part, but also they must be involved in the planning of the 

experimentation. Since the experiments on nanomaterials are usually expensive, a kind 

of compromise between the highest possible number of compounds for testing and the 

lowest number of compounds necessary for developing a reliable QSAR model should 

be reached. 

When analyzing the current status of nano-QSAR, the following noteworthy 

suggestions for further work can be made: 

1. There is a strong need to supplement the existing set of molecular descriptors by 

novel “nanodescriptors” that can represent size-dependent properties of nanomaterials. 

2. A stronger than usual collaboration between the experimentalists and nano-QSAR 

modelers seems to be crucial. On one hand, it is necessary to produce data of higher 

usefulness for QSAR modelers (more compounds, more systematic experimental 

studies within groups of structural similarity, etc.). On the other hand, a proper 

characterization of the nanomaterials structure is not possible only at the theoretical 

(computational) level. In such situation, experiment-based structural descriptors for 

nano-QSAR may be required. 
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Further aspects of modeling studies by using a QSAR approach are described in 

[11,14]. The paper provides advises on how to develop QSARs in future for 

nanomaterials given the current experiences with QSAR in ecotoxicology of regular 

bulk chemicals. One of the recommendations is that separate QSARs need to be 

developed for individual classes of nanomaterials, and some possibilities for structural 

descriptors are given. 

Results and discussion 

During the project published data on nanotoxicity were collected and was 

uploaded into Online Chemical Database and Modelling Environment [15] 

(http://ochem.eu/). The main priorities were given to toxicity of metal and metal oxides 

nanoparticles (Fe, Ag and TiO2 are our first targets; other metals/metal oxide will be 

also included). About 500 data points were collected. 

Several changes were made to update the OCHEM to be used as a user-friendly 

data base for the nanotoxicity data collection. To describe the toxic properties of the 

nanoparticles an abbreviation was used: for each property “Nano” prefix was used to 

separate the nano-properties from all others. 

The basic characteristics of nanoparticles are chemical composition, average 

particle size (APS) and shape of the nanoparticles. 

 

Chemical composition of NP (Material Nanoparticles of Elements) 
Elemental composition describes what elements make up ENMs. Usually there 

is no correlation between the toxicity of NPs and the toxic properties of bulk 

materials[16,17]. However, composition of NPs is an important parameter [11]. 

 

Average nano-particle size 
Nanoscale materials are defined as a set of substances where at least one 

dimension is less than approximately 100 nanometers. This parameter seems to be at 

least as important as the chemical composition as far as we move towards the nano-

range, and the dependences of the toxicity of diverse inorganic materials versus the 

particle size can exhibit either a volcano-shape behavior or an exponential curve 

descending with the increase in the particle size. There are several possibilities to 

describe the average particle size (APS). On the one hand it is possible to use an 
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average value. On the other hand one can describe APS using an interval, i.e. as 

[min_value; max_value]. 

 

Shape (morphology) of nanoparticles 
The role of this factor is definitely underexplored and underestimated 

compared to the first two factors. Nanomaterials can be nanoscale in one dimension (eg. 

surface films), two dimensions (e.g. strands or fibres), or three dimensions (eg. 

particles). They can exist in single, fused, aggregated or agglomerated forms with 

spherical, tubular, and irregular shapes. Common types of nanomaterials include 

nanotubes, dendrimers, quantum dots and fullerenes. 

Nanomaterials can be created with various modulation dimensionalities [17]: 

zero (atomic clusters, filaments and cluster assemblies), one (multilayers), two 

(ultrafine-grained overlayers or buried layers), and three (nanophase materials 

consisting of equiaxed nanometer sized grains). Nanomaterials (gold, carbon, metals, 

metal oxides and alloys) with variety of morphologies (shapes) are depicted in Fig. 1. 

 

Fig.1 Sample of the forms of the nanoparticles [17]. 

There are two different classification schemas describing the possible 

forms of the nanoparticles [18, 19]. Fig. 2 indicates the theoretical shapes of 

objects. As one can see they are rather different from those observed in 

experimental measurements (Fig. 1). Shevchenko suggested a classification 

based on a geometrics apology between shapes of the particles and figures [18]. 

Most of the figures are well known mathematical objects and can be easily used 
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to calculate some descriptors for QSAR modelling. Maynard [19] looked at the 

classification from another point of view. He took as a model some kind of 

conceptual subjects taking into account reactivity. Nanoparticles belong to nine 

categories (Fig.2 ) depending on their structure and properties: i) spherical or 

compact particles (compositionally homogeneous), ii) highaspect-ratio particles 

(compositionally homogeneous), iii) complex non-spherical particles 

(compositionally homogeneous), iv) compositionally heterogeneous particles: 

core surface compositional variation, v) compositionally heterogeneous 

particles: distributed compositional variation, vi) homogeneous agglomerates 

(agglomerates of a single particle class), vii) heterogeneous agglomerates 

(aggregates of diverse particle types), viii) active particles (particle behaviour 

and properties depend on external stimuli), and ix) multifunctional particles 

(particle behaviour and properties depend on functional responses to local 

environment and stimuli). He also paid an attention to potential mixtures of 

nanoparticles. 

Unfortunately both these descriptions are mainly a nice theoretical 

approach. When one moves to the practice, then it is not easy to figure out how 

these classification schemas can be applied. Only few authors mention shape of 

the particles in their works and even then there is no unity between the authors. 

For instance if we take titanium or SiO2 nanoparticles (Fig.1 ), some authors 

define this shape like a nanoflower and other call the same form as sea-urchin-

like shape. 
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Fig. 2. Sample of the forms of the nanoparticles [18, 19]. 

Material Nanoparticles of Elements, APS and shape of the nanoparticles were 

used as obligatory condition for all properties in OCHEM. Thus each record was 

required to incorporate information about these the most important parameters of 

nanoparticles. The collected data are summarised in Table 1. 

Table 1. Overview of the collected data. 

NanoToxicity LC50 aquatic 89 records 13 compounds 

NanoToxicity MIC 101 records 7 compounds 

NanoToxicity immobilization 25 records 1 compounds 

NanoToxicity mortality 75 records 5 compounds 

NanoToxicity log(1/EC50) 17 records 17 compounds 

NanoToxicity LC20 aquatic 15 records 5 compounds 

NanoToxicity LD50 11 records 8 compounds 

NanoToxicity EC50 21 records 8 compounds 

Nanotoxicity survival 14 records 10 compounds 

Nanotoxicity cell viability 32 records 1 compounds 

NP aggregation state 3 records 1 compounds 

Nanotoxicity [*OH] generation 48 records 2 compounds 

NanoToxicity NOEC 20 records 5 compounds 
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NanoToxicity EC20 6 records 4 compounds 

 

We have developed several test models based on ASsociative Neural Networks 

(ASNN)[20], linear methods and several others approaches available at OCHEM [15]. 

We have also reproduced a previously published model [21]. Calculated models were 

comparable in terms of their statistical parameters with those described in the original 

article [21]. The originally published and reproduced with Multiple Linear Regression 

(MLRA) models had R2=0.85, Q2 =0.77 and R2 =0.87, Q2 =0.83, respectively. R2 is 

square of Pearson’s correlation coefficient and Q2 is coefficient of determination 

(http://en.wikipedia.org/wiki/Coefficient_of_determination) that is another frequently 

used in QSAR literature statistical parameter. It is also known as cross-validated R2. 

The best models were calculated with ASNN and in some cases with MLRA methods 

(see Table 2). 

Table 2. Statistic data of calculated models 

Models Properties Descriptors R2 Q2 

Articles № 16 Log(1/EC50) ∆HMe+ 0,85 0,77

ASNN Log(1/EC50) ∆HMe+ 0,86 0,78

MLRA Log(1/EC50) ∆HMe+ 0,87 0,83

FSMLR Log(1/EC50) ∆HMe+ 0,87 0,79

KNN Log(1/EC50) ∆HMe+ 0,77 0,6 
          
ASNN  Immobilization(the same time) APS; exp.concentration 0,78 0,78
MLRA  Immobilization(the same time) APS; exp.concentration 0,47 0,47
FSMLR Immobilization(the same time) APS; exp.concentration 0,43 0,4 
KNN Immobilization(the same time) APS; exp.concentration 0,53 0,51
          

ASNN  Immobilization(different time) 
APS; time; 
exp.concentration 0,71 0,69

MLRA  Immobilization(different time) 
APS; time; 
exp.concentration 0,27 0,27

FSMLR Immobilization(different time) 
APS; time; 
exp.concentration 0,36 0,34

KNN Immobilization(different time)
APS; time; 
exp.concentration 0,54 0,49

MLRA (Multiple Linear Regression Analysis); ASNN (ASsociative Neural Networks); FSMLR (Fast 
Stagewise Multiple Linear Regression) [22]; KNN (K-Nearest Neighbors). All these machine learning 
methods are available at OCHEM [15]. The red values highlight models with the highest accuracy of 
predictions, which are shown at Fig. 3. 

Several calculated models developed using measured properties of 

nanoparticles are shown at Fig. 3. 
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a).  

b).  

c).  

 

Fig.3 Calculated models a. immobilisation without accounting the time 

dependences (ASNN method [20] was used). Data are taken from the original article 

[21]. b. immobilisation with accounting the time dependence (ASNN) from the same 



  Project report – ITN‐ECO         Natalia Golovina    12 

 

reference. c. EC50 toxicity of the nanomaterials calculated using MLRA (the model was 

reproduced according to the original publication of Puzyn T [21]. 

My work was presented as a poster [23] at an international conference Munich 

Interact 2012 (http://www.munich‐interact.org/) and in a nearest future a publication 

about the main achievement about will be prepared. 

 

Further goals 
The main problem with modelling nanoparticles is how possible to describe a 

structure of the nanomaterials. There are a lot of different types of the nanomaterials 

with different parameters. It is simply impossible to combine all nano objects in one 

description. The main idea is to analyse every group separately. During this fellowship 

the work has been mainly concentrated on the analysis of one class of nanoparticles 

notably inorganic metal nanoparticles. 

At the moment we use a characteristic of the nanoparticles and experiments for 

designing models. The main question is which combination of properties will be the 

most appropriate ones for definition of the nanomaterials. To solve this problem we 

need to collect a reliable dataset with comprehensive description of nano objects and 

their main important characteristic. 

The first steps were made toward QSAR modeling of the nanotoxicity. The 

OCHEM database (http://ochem.eu) was extended to incorporate nanoscale objects and 

it will be filled continuously with data on the nanotoxicity of metals and metal oxides. 

Further work will include: accumulation and digestion of the available 

literature and own experimental data (Fe, Ag with algae, daphnia, zebra fishes, planaria, 

molluscs) on the relationship between the toxicity of inorganic nanomaterials and their 

chemical composition, size of the nanoparticles, shape (morphology) of nanoparticles 

and the availability and nature of the grafted groups. The experiments will be carried 

out in parallel in Moscow, St-Petersburg and Puschino, Russia; and also in Institute of 

Environmental Sciences (CML) of the Faculty of Science of Leiden University, Leiden, 

The Netherlands. 

In our studies, we plan to use these data to develop predictive QSAR models 

for nanoparticles toxicity. The further work will include development of new 

descriptors to characterize nanoparticles according to their chemical composition and 

size. As a result we would like to have of a user-friendly database containing 
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experimental physico-chemical and biological properties of nanoparticles and the 

evaluation of predictability of the toxicity of novel nanomaterials on the basis of newly 

developed algorithms linking physicochemical substance properties to the observed 

toxicity profiles of the NPs. 
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Supported information: 
Abbreviations 

 

ASNN − ASsociative neural network 
kNN − K-Nearest Neighbors 
MLRA − Multiple Linear Regression Analysis 
FSMLR − Fast Stagewise Multiple Linear Regression 
NP − NanoParticles 

QSAR − Quantitative Structure Activity Relationship 
ROS − Reactive Oxygen Species 

 OCHEM – On-line CHEmical database and Modelling environment (http://ochem.eu 
[15]) 

 
Abstract from conference «Munich Interact 2012» 
 

Modeling toxicity of nanoparticles  
using Online Chemical Modeling Environment 

Natalia Golovina1, Sergii Novotarskui2, Iurii Sushko2, Leonid M. Kustov3, Igor V. Tetko2,4  
1 Chemistry Department, Moscow State University, Leninskie Gory 1, bldg 3, 119991 Moscow, Russia 
2 eADMET GmbH, 85764 Neuherberg, Germany 
3 N.D. Zelinsky Insitute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky pr., 119991 Moscow, Russia  
4 Chemoinformatics group, Institute of Bioinformatics & Systems Biology, 85764 Neuherberg, Germany  

In the recent decades, nanomaterials have deeply integrated into our everyday’s life. 
There are numerous examples of already established and possible applications of using 
nanoparticles such as textile, cosmetics, optical, pharmacy, electronics, etc. Although the 
nanotechnology field is growing rapidly, the potential harmful effects of nanomaterials on 
human’s health or the environment have not yet been identified. Thus, there is a clear need for 
assessment of such potentially dangerous toxic effects of nanomaterials. 

The classical way of assessing toxicity, e.g. by performing in-vivo experiments of 
hydrobionts, is very expensive and time consuming. Performing such tests for all possible 
nanoparticle types, sizes and concentrations is practically infeasible. A cheap and efficient 
alternative to such tests is using predictive computational models, for example Quantitative 
Structure-Activity Relationship (QSAR) models. 

Using QSARs for nanoparticles is a new and still developing area of research. Within our 
study, we have collected toxicity data for a number of nanoparticles (currently, metals and metal 
oxides) for different species: daphnids, planaria worms, mussels. Additionally, we have 
collected the information for different nanoparticles sizes, under different concentrations and 
exposure intervals. The data has been uploaded to the Online Chemical Modeling Environment 
(www.ochem.eu) and is publicly accessible by everyone on the Web. In our studies, we plan to 
use this data to develop predictive QSAR models for nanoparticles toxicity. Several models 
calculated using measured properties of nanoparticles are presented. The further work will 
include development of new descriptors to characterize nano-particles according to their 
chemical composition and size. 
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